Roll No. Total No. of Pages : 02

Total No. of Questions: 09

B.Tech.(CE) (2011 Onwards) (Sem.-4)
DESIGN OF CONCRETE STRUCTURE-I

Subject Code: BTCE-403 Paper ID: [A1173]

Time: 3 Hrs. Max. Marks: 60

INSTRUCTION TO CANDIDATES:

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.
- 4. Assume any data suitably. For all designs Limit State Method is to be used.

SECTION-A

Q.1 Write briefly:

- 1. Why shrinkage in concrete occurs?
- 2. Draw the flow chart for various concreting operations.
- 3. Why flyash concrete is not commonly used?
- 4. Explain creep of concrete.
- 5. Why bleeding of concrete occurs?
- 6. What is Cellular Concrete?
- 7. Distinguish between plain and prestressed concrete.
- 8. List the various types of cements.
- 9. Explain Air entrained concrete.
- 10. What is Ferro-fibrocrete?

SECTION-B

- Q.2 How will you prepare light weight concrete to suit different situations?
- Q.3 A rectangular R.C.C beam 300 mm wide and 450 mm deep (overall) is R/F with 4 bars of 20 mm dia on tension side. The beam X-section is subjected to max. B.M. of 30 kN-m, S.F. of 30 kN and a torsional moment of 36 kN-m. Design the longitudinal and transverse R/F.
- Q.4 Explain Reinforcement splicing. Also explain curtailment of R/F.
- Q.5 Explain the importance of anchorage of reinforcing bars in flexure and shear.
- Q.6 Design the interior panel of a flat slab 5.6×6.6 m in size, for a super-imposed load of 7.75 kN/m². Provide 2-way reinforcement. Use M 20 concrete and Fe 415 steel.

SECTION-C

Q.7 Determine the proportions of the materials required for making the concrete from the data.

Compressive strength required at $28 \text{ days} = 277 \text{ kg/cm}^2$

Max. Size of coarse aggregates = 40 mm

Fineness modulus of coarse aggregates = 6.9

Fineness modulus of fine aggregates = 2.1

Weights of fine and coarse aggregates are 1750 kg/cm³ and 1070 kg/m³ respectively. Voids in fine and coarse aggregates are 38% each.

- Q.8 What are the quality control tests carried on concrete ingradients?
- Q.9 Explain why Limit state design is considered more rational than Working stress design.